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exponential family {Fe} , 6 eflc 9?, random samples of sizes ml,...,mk, respectively, are to 

be drawn. After the observations have been drawn, a selection procedure will be used to 

determine which of these k populations has the largest value of 9 . Given a loss for selections 

at each parameter configuration, given n past observations, and given a prior for the k 

parameters, a Bayes selection procedure can be found and its Bayes risk can be determined, 

where both depend on m„...,mk. Let the sample sizes be restricted by m1+... + mk=m, 

where m is fixed. The problem of how to find the optimum (minimum Bayes risk) sample 

design subject to this constraint is considered, as well as m-truncated sequential sampling 

allocations. Results for normal and binomial families, under the "0-1" loss and the linear loss, 

are presented and discussed. An introduction to Bayes selection procedures is included. 
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1. INTRODUCTION 

Let Plv..,Pk be k populations which belong to a given one parameter exponential family 

{Fe} ,9 eQ c SR , where P; is associated with a certain parameter 0; efi, i = l,...,k, but the 

values of 9j,...,0k are unknown. Suppose one wants to select, based on independent random 

samples of respective sizes m1,...,mk, that population which has the largest 0 -value 0[k], say. 

In the decision theoretic approach, let L(0,i) be a given loss for selecting populationP; at any 

Q = (Qu...,Bk)eQk, i = l,...,k. Two special types of loss functions, which will be primarily 

considered later on, are the so-called "0-1" loss L(0,i) = 0 if 9; =0[k], and 1 otherwise, and 

the linear loss L(0,i) = 0[k]-0i, i = l,...,k. The performance of a selection rule d, i.e. a 

measurable function from the sampling space into the set {l,...,k}, can then be measured by its 

expected loss, i.e. its frequentist risk, at each parameter configuration 0 sQk. Extending this 

framework to the Bayes approach, it is assumed that the parameters 0 = (01,...,0k), say, are 

a priori random and follow a known prior density 7t(0), 0eDk. The purpose of this paper is 

to provide an introduction to Bayes selection procedures, a brief review of multi-stage 

selection procedures, and a thorough discussion of recent results on Bayes look-ahead 

sampling designs for selection procedures. 

The history of selection procedures dates back to the 1950s. The first such procedures 

considered have been based on k independent samples of equal sample sizes. An overview and 

thorough discussions of these early procedures, and of the development of numerous branches 

of the theory of selection thereafter until 1979, is provided in the by now classical monograph 

by Gupta and Panchapakesan (1979). In celebration of "40 Years of Statistical Selection 



Theory", and its pioneers Robert E. Bechhofer, Shanti S. Gupta, and Milton Sobel, a 

conference has been held on September 5-10, 1993, at Bad Doberan in Germany, and its 

proceedings have been included in a special journal issue, edited by Miescke and Rasch (1996). 

To reduce the effort or cost of sampling, without losing too much power in the decisions, 

selection procedures which incorporate combinations of various types of sampling, stopping, 

and selection components have been proposed and studied in the literature over the past three 

decades. In their fundamental monograph, Bechhofer, Kiefer, and Sobel (1968) have derived 

for exponential families, in the frequentist approach, optimum sequential selection rules. These 

are based on vector-at-a-time sampling, i.e. sampling of the same number of observations from 

each population at a time or stage, the natural terminal selection decision, and an optimum 

stopping rule. Elimination of certain populations from further sampling, which may emerge as 

apparently inferior populations during the sampling process, is not allowed there as an option 

at intermediate stages of the sampling process. At this point it should be mentioned that in case 

that an elimination of populations from further sampling would indeed be allowed, the option 

exists of extending this elimination to the pool of populations available for selection at the end, 

or not. An overview of sequential ranking and selection procedures is provided by Gupta and 

Panchapakesan (1991). 

A simple selection procedure, based on vector-at-a-time sampling, which incorporates 

elimination from sampling and selection, is a two-stage selection procedure of the following 

type. After tt observations have been drawn from each population at Stage 1, a suitable set of 

populations is eliminated from further sampling. Then t2 observations are drawn from each 

population that has not been screened out, and a final selection is then made from the latter, 

using all of the data observed from them. Here an option exists regarding the number of 



populations retained for Stage 2: it can be chosen to be random or fixed pre-determined. The 

former case has been studied in Gupta and Miescke (1984a) in the Bayes approach. Both 

cases, and their extensions to multi-stage selection procedures have been treated, also in the 

Bayes approach, by Gupta and Miescke (1984b), using backward optimization. An overview 

of this class of procedures, which select the best population efficiently in terms of risk and 

sampling costs, is provided by Miescke (1984). The results derived in this respect depend 

heavily on the assumption that at each sampling stage an equal number of observations, which 

may, however, vary from stage to stage, is drawn from each population still in the running. 

This assumption allows to utilize permutation symmetry in the posterior risks in connection 

with permutation invariant priors, which simplifies the analysis of such procedures. 

Whenever a population is eliminated from the pool of populations retained for a final 

selection, a conflict of the following type may arise. The data collected from such a population 

prior to its elimination could make it look better again, relatively to the other populations, after 

further sampling from the latter have turned out to be not so favorable for those. The Bayes 

approach clearly calls for utilizing the information from all observations that have been drawn, 

since more observations cannot decrease the Bayes risk. Using this approach, it may in fact 

occur that such an eliminated population emerges, in terms of the posterior risk, as the 

population that appears to be the best. Elimination of populations from final selections is thus 

unreasonable from a Bayesian point of view. Elimination, or just temporary elimination, of 

populations from sampling at some stages of the sampling process can be incorporated in a 

natural way into the Bayes approach. The advantage of inherent permutation symmetry, 

however, is lost here. In conclusion, allocation of a possibly unequal number of observations, 

where some of them may be actually zero, to the k populations at various stages seems to be 



more appropriate. Temporarily drawing no new observation from certain populations, but 

retaining all k populations in the pool for the final selection decision, may be called a soft 

elimination. Such a soft elimination invites to use also priors which are not permutation 

symmetric, since updated priors of this type occur anyway in a natural manner at the various 

stages, due to soft elimination. 

In many statistical experiments, the sampling process extends over a substantial length of 

time. One of the advantages of the Bayesian approach in a statistical analysis is that it allows to 

perform conclusions at intermediate time points. Especially, such conclusions can be made 

toward modifications of the future sampling and decision process. Such types of adaptive 

sampling or sampling allocation schemes will be the main topic of discussions later on, when 

Bayes look-ahead selection procedures are considered. Dealing with information from samples 

of possibly unequal sizes from the k populations may occur quite naturally. A test person may 

not always come on schedule, or drop out of the study, a test object may break under stress, a 

budget cut may force to abandon some test runs, or random time spans are under study, which 

are subject to some form of censoring. 

The main type of problem considered in this paper is how to allocate observations to the k 

populations in a stepwise manner, where the goal is to select the best population at the end of 

the sampling process. More precisely, assume that k independent samples of respective sizes 

n1,...,nk have been observed already at a first stage from populations Pl5...,Pk, which may be 

the combined outcomes of several previous stages, and that m additional observations are 

allowed to be taken at a future second stage. One interesting problem that is considered later 

on is how to allocate m,,...,mk observations, subject tom,+...+mk =m, in an optimum way 

among the k populations, given all the information, prior and first stage observations, gathered 



so far. Looking ahead with the expected posterior Bayes risk, given the information presently 

at hand, and then minimizing it, does not only provide an optimum allocation of observations in 

the future. It also allows to assess how much better the final decision can be expected to be 

after further sampling has been done, following this optimum allocation. In marketing research 

such as direct marketing, medical research such as clinical trials (Whitehead, 1991), and social 

research such as survey sampling (Govindarajulu, Katehakis, 1991), very often interim analyses 

are performed at certain stages to decide if sampling should be continued, and if so, how to 

allocate new observations. Such Bayes designs have been studied in the binomial case, under 

various loss functions, by Gupta and Miescke (1993) for the more general problem of 

simultaneous selection and estimation, including cost of sampling. For the sake of simplicity of 

presentation, simultaneous estimation with selection and cost of sampling will only be 

considered briefly in the following. The former would require to use more involved loss 

functions, and the latter the incorporation of stopping rules. Modifications of the allocations 

considered later on to such extended features are straightforward, but technically more 

involved. 

Allocating m new observations at a second stage, using the expected posterior risk, can 

only be done after the terminal selection rule is known. The latter is the Bayes selection which 

is based on all observations drawn in the complete sampling process. Thus, the first step 

toward a Bayes design for the second stage is to determine the optimum (Bayes) single-stage 

selection rules for various sample sizes m, mk. This has been done, under both the "0-1" 

loss and under the linear loss, for the binomial case in Abughalous and Miescke (1989), 

including extensions to a larger class of loss functions, and for the normal case in Gupta and 

Miescke (1988). 
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After the Bayes terminal selection decisions are known, one can proceed as described 

above, looking ahead for all possible sampling allocations, which are in the present setting 

restricted by mx+...+mk =m, compare the associated expected posterior risks, find its 

minimum value, and then implement a design associated with it. At this point one may wonder 

why all m observations are allocated at once, rather than allocating only a few (or just one), 

learning more through them (it), and then initiating a new allocation optimization process for 

the remaining allocations. As will be shown later, such a breakdown of allocation of m 

observation, if done properly, cannot increase the Bayes risk and may in fact be better than 

allocating all m observations at once. The best possible allocation scheme is to allocate one 

observation at a time, in m consecutive steps, which are altogether determined by backward 

optimization, starting at the end with the Bayes terminal selection for every possible allocation 

m1,...,mkwith m1+...+mk=m, and then optimizing successively every single allocation 

before. However, this appears to be only feasible for discrete distributions, and the only Bayes 

sequential design of this type that has been treated up to now is for the binomial case (Miescke, 

Park, 1997a). Alternative allocation schemes, which appear to perform close to the best based 

on backward optimization, are studied and discussed for the normal case in Gupta and Miescke 

(1994, 1996a), and for the binomial case in Gupta and Miescke (1996b) and Miescke and Park 

(1997a). Another type of adaptive sampling and selection for Bernoulli populations, which is in 

the frequentist approach, can be found in Bechhofer and Kulkarni (1982). 

One reasonable procedure is to allocate in an optimum way one observation at a time, 

pretending that it is the last one to be drawn before final selection, and then to iterate this 

process until all m observations have been taken. This will be considered later on in this paper. 

Other procedures, which may allocate more than one observation at a time, will also be 



considered. However, they appear to be less appealing since with each new observation more 

can be learnt about the unknown parameters, which in turn can improve the basis for further 

decisions. Look ahead procedures, which have been utilized previously by Govindarajulu and 

Katehakis (1991) in survey sampling, and which are described and discussed in various other 

settings in Berger (1985), will be discussed thoroughly later in this paper. 

Selecting in terms of the largest sample mean is called in the literature the natural selection 

rule. It is the uniformly best permutation invariant selection procedure, in the frequentist sense, 

for a general class of loss functions, as long as the sample sizes are equal. However, for 

unequal sample sizes, the natural selection rule appears to be less powerful, although it still 

remains intuitively appealing. In view of this fact, optimum sample size allocations for the 

natural selection rule have been considered in the frequentist approach by Bechhofer (1969), 

Dudewicz and Dalai (1975), Bechhofer, Hayter, and Tamhane (1991), and Bechhofer, Santner, 

and Goldsman (1995). Bayes selection rules under unequal sample sizes can have complicated 

forms which may not be represented in closed form, as it has been shown in Abughalous and 

Miescke (1989) and Gupta and Miescke (1988). Bayes rules for more involved normal models 

have been studied by Berger and Deely (1988) and Fong and Berger (1993). Earlier ideas of 

and results on sampling allocations for Bayes rules under normality and the linear loss are due 

to Dunnett (1960). 

An introduction to Bayes selection procedure is provided in Section 2. Here, as well as in 

the remaining sections, special emphasis is given to two specific models under the "0-1" loss 

and the linear loss. The first is the normal case with independent normal priors for the k 

parameters, which is called the normal-normal model, and the second is the binomial case with 

independent beta priors, which is called the binomial-beta model. As a first step toward Bayes 



look-ahead sequential sampling designs, Bayes one- and two-stage sampling designs are 

studied in Section 3. Finally, Bayes look-ahead sequential sampling designs are treated in 

Section 4. 

2. BAYES SELECTION PROCEDURES 

Let Pl3...,Pk belong to a one parameter exponential family {F9} , 9 e Q c 9?, where P; is 

associated with a certain parameter 0. eQ, i = l,...,k, but where the values of 91;...,9k are 

unknown. Let the goal be to find that population which has the largest parameter value. 

Special emphasis will be given to the normal family (N(0,o2)} ,8sfi = 9?, with a2 > 0 

known, and to the binomial family (B(n,9)} , G eQ = [0,1]. Let X,,...,Xk denote sufficient 

statistics from independent random samples of sizes nlv.., nk fiomP, Pk, respectively. Since 

Bayes selection procedures are the topic, only non-randomized decision rules need to be 

considered in the following. These can be represented as measurable functions d(x) with 

values in {l,...,k}, where x = (xlv..,xk) are the observed values of X = (Xl5...,Xk). In the 

decision theoretic approach, let L(8,i) be the loss for selecting population P; at 

9 = (91,...,9k), with L(6,i)<L(9,j) for 0£ >ejs i,j = l,...,k. Later on, emphasis will be 

given to two special loss functions, the "0-1" loss and the linear loss, which are defined by 

L(9,i) - l-U   .(G,), "0-1" loss, (1) 
l°[k]/ 

L(0,i) = 9[k]-9j, linear loss, 

where 9[k] -max{Q1 9k}, i = l,...,k. 



Finally, the Bayesian component is added to the problem. Here the parameters 

© = (0,,...,0k) are assumed to be a priori independent random variables which follow a prior 

distribution with a known density <0) = 7CI(ei)x...x7Ck(ek). For the normal family, normal 

priors 0; ~ N(u.i7v~') with u; eSR.V; >0 will be assumed, and for the binomial family, beta 

priors 0; ~ Beta(a;, ß;), with a;, ß; > 0, i = 1,..., k. The frequentist risk of a selection rule d 

at 0 = 9 is given by R(0,d) = Ee(L(0,d(X)), and its Bayes risk by r(7i,d) = E7t(R(0,d)). 

The latter is minimized by every Bayes rule, and this minimum r(7t), say, is called the Bayes 

risk of the problem. The Bayes risk of a rule d can be represented in two ways as follows. 

rOr,d)=E(L(0,d(X))) (2) 

= Ex(E{L(0,d(X))|0}) 

= Em(E{L(0,d(X))|X}), 

where m denotes the marginal density or discrete probability function of X. The standard way 

of determining a Bayes rule dB, say, is to minimize, at every X = x, the posterior expected 

loss, i.e. the posterior Bayes risk E{L(0,d(x))|X = x}. Depending on the type of loss 

function, one arrives at the following criteria. 

E{L(0, dB (x)) | X = x} = min E{L(0, i) | X = x} in general, (3) 

= 1 - max P{0; = ®M | X = x} for "0 -1" loss, 
i=l k 

K = x\ -i 
=l,...Jc 

E{0M|X = x} -maxE{Qi\X = x}        for linear loss. 

Apparently, under the linear loss, E{0W | X = x} does not need to be considered for finding a 

Bayes rule. However, it is relevant for the evaluation of the Bayes risk r(7c), and thus it will be 

relevant for the Bayes designs to be considered in the subsequent sections. For the two special 

loss functions, the quantities to be minimized or maximized in (3) can be represented by 
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E{L(0,i)|X = x} = J Uß,i) 7c(0 |x) d0, in general, (4) 
iRk 

p{0;=0[k]|x = x}= Jn JTCJCGJIXJ)dej WiCejxj)des , for-o-y-te, 
9} j« V-oo / 

E{0; |X = x} = Je. TCiCGilxj) d0; , for linear loss, 
SR 

where 7c(0|x) is the posterior density of 0, given X = x, and 7Cr(9r|xr) is the posterior 

marginal density of 0r, given X = x, r = 1,..., k. In the second and third equation of (4), the 

fact that 7t(0|x) = 7t1(01|x1)x...x7ik(0k|xk) is utilized. This means that a posteriori, 0,,..,0k 

are not only independent, but that the posterior distribution of 0r, given X = x, depends on x 

only through xr, r = 1,.. .,k. 

In the remainder of this section, Bayes rules for the normal-normal and the binomial-beta 

model will be studied under the "0-1" loss and the linear loss. Because of the inherent 

independence, only the distributions associated with each individual i-th of the k populations, 

i e {1,..., k}, have to be specified. For the normal-normal model one has the following. 

Normal-Normal:     XJ0 = 0   -N^p:1), ©; ~ N^v'1), (5) 

0s|X = x ~ NfP-X'+V^,(pi+Vi)-'l , Xl~ N^p-'+v:'), 
I    Pi+Vj J 

where X; is the sample mean of the i-th population, and p; = n;a
_2 is its precision. The Bayes 

selection rules under "0-1" loss and linear loss can now be seen, in view of (3), (4), and (5), 

tobe dB(x) = i0,iffor i = l,...,k, the following respective quantity is maximized at i = i0. 

P{®i =0w|X = x} = JIl(I)j(e|Xj)d<I>i(0|xi) ,      for"0-7" loss, (6) 
SR J*1 

E{0.1X = x} = ^ — , for linear loss, 
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where <Br(-|xr) is the c.d.f. of the conditional distribution of 0r, given X = x , r - l,...,k, 

which is represented in (5). 

At this point it should be mentioned that there is a natural selection rule dN, say, which 

selects in terms of the largest of the sample means X„...,Xk. In terms of the frequentist risk, 

and for a large class of loss functions, including the "0-1" loss and the linear loss, it is the 

uniformly best permutation invariant selection procedure, if the sample sizes n„...,nkare all 

equal. More generally, an analogous fact holds for monotone likelihood ratio families. The 

history of its proofs, one of which is in the Bayesian approach utilizing permutation invariant 

priors, can be found in Gupta and Miescke (1984b). For the present situation, where n„...,nk 

may not be equal, no optimum properties of dN under the "0-1" loss are known, except 

admissibility, which has been proved only recently in Miescke and Park (1997b). Gupta and 

Miescke (1988) have shown that  dN  is minimax under the  "0-1" loss if and only if 

Ü! =...= nk. Here the minimax value of the problem is 1-1/ k, which can be proved with a 

suitable sequence of independent normal priors. 

An undesirable property of dN under the "0-1" loss was first discovered (Lam and Chiu, 

1976, Tong and Wetzell, 1979) by noting that the frequentist risk of dN is not always 

increasing in each of the sample sizes nlf...,nk. On the other hand, under the linear loss, dN 

is a proper Bayes rule and, because of its uniqueness, also admissible (Berger, 1985). This can 

be readily seen (Gupta and Miescke, 1988) from (6), by letting u-r = u and vr=cpr, 

r = l,...,k, for some fixed real n and a positive c. Properties of Bayes rules for other priors 

are also discussed there, as well as in Berger and Deely (1988) and Fong and Berger (1993). 

12 



Turning now to the binomial-beta model, the situation regarding the distributions presents 

itself as follows: 

Binomial-Beta:        XJ0 = 9 ~ B{TI{,Q) , 0; ~ Beta(ai3ßi),        (7) 

0JX = x ~ Beta(ai+xi,ßi+ni-xi),    X; ~ PEriv^^/l), 

where a;,ß; > 0, i = 1,...,k. Here the unconditional marginal distribution of X;, i = 1,..., k, is 

a Pölya-Eggenberger type distribution (Johnson and Kotz, 1969), sometimes called beta- 

binomial distribution, which in the present situation turns out to be 

PIX-xJ = 
iU   rXoc.+ßj) T(ai+xi)r(fii+ni-xi) 

record)     r(ai+Pl+ni)       > x
I 

= 0-1--Iv      ^ 

The Bayes selection rules under "0-1" loss and linear loss can be seen, in view of (3), (4), 

and (7), to be dB(x) = i0, if for i = l,...,k, the following is maximized at  i = i0. 

P{0; =0M|X = x} =   J nFj(0lxj)dFi(0lxi) »       for"0-7" loss, (9) 
[0,1] j*i 

E{0-1X = x} =  Lr—!— , for linear loss, 
CCj+ßi+lli 

where Fr(-|xr) is the c.d.f of the conditional distribution of 0r, given X = x , r = l,...,k, 

which is represented in (7). 

At this point, again, the natural selection rule dN, which selects in terms of the largest of 

the sample means X, /n, ,...,Xk /nk, has to be discussed. Since the binomial family is also an 

exponential family, dNis also here uniformly best invariant selection rule if and only if the 

sample sizes are equal. Likewise, Abughalous and Miescke (1989) have shown that under the 

"0-1" loss, minimaxity of dNholds if and only if n, =...= nk. As in the normal case, the 

minimax value of the problem is 1-1/k, which can be proved with a suitable sequence of 
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independent Beta priors. Other results regarding dN turn out to be different from their 

counterparts in the normal case. For example, dN is not a proper Bayes rule here. Properties 

of Bayes rules, for various priors, under the "0-1" loss and the linear loss have been studied in 

the same paper. Questions regarding the optimality of dN for unequal sample sizes n,,...,nk, 

in the present setting, have been addressed in Bratcher and Bland (1975), Risko (1985), and in 

Abughalous and Miescke (1989). 

There are two other types of Bayes selection procedures, which are based on different 

goals or philosophies. These will be described briefly at the end of this section. The first is 

within the subset selection approach, which is due to Gupta (1956, 1965). Here the goal is to 

select a non-empty subset sc{l k}, of preferably small size, which contains the best 

population. This goal can be represented in various ways by means of the loss function. The 

first paper within this framework is due to Deely and Gupta (1968), which deals with the linear 

loss function L(0,s) = 2.esas.(e[k]-9i). The loss function L(e,s) = 2ies(a-bl{6[k]}(ei)) 

has been used by Bratcher and Bhalla (1974) and Gupta and Hsu (1977), the loss function 

L(0, s) = c|s| + 0[k] -maxies 0; has been used by Goel and Rubin (1977), and the additive loss 

function L(0,s) = Xies ^i(0)> ^^ emphasis on the special case L(0,s) = X!ies(0[k]-0i~s)> 

has been used by Miescke (1979). Another, non-additive, loss function has been used in 

Chernoff and Yahav (1977). Further references in this regard can be found in Gupta and 

Panchapakesan (1979). 

The other type of selection procedures combines selection of the best population with the 

estimation of the parameter of the selected population. The decision rules are now of the form 

5(x) = (d(x),ed(x)(x)), where d(x) e{l,...,k} is the selection rule, and e;(x), i = l,...,k, is a 
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collection of estimates for 6; , i = l,...,k, which are available after selection. As it is shown in 

Cohen and Sackrowitz (1988) and Gupta and Miescke (1990), the decision theoretic treatment 

of the combined selection and estimation problem consists of two steps of optimization. First, 

the possible estimates are determined, which turn out to be the usual Bayes estimates of the 

related problem of estimation without considering selection. Then, after knowing the available 

estimates, the optimum selection is made. Detailed results for the normal case, under the 

additive loss function L(0,8) = A(e,d) + B(0d,ed), and various special cases, are presented in 

Gupta and Miescke (1990). Here A(0,d) is the loss due to selecting population Pd, and 

B(6d,ed) is the loss of estimating 9d with ed, d = l,...,k. Similar work for the binomial case 

has been done by Gupta and Miescke (1993). In both papers, overviews of work in this 

direction and further references can be found. 

3. BAYES ONE- AND TWO-STAGE SAMPLING DESIGNS 

Starting with the situation described in the previous section up to (3), let us now consider 

a fixed total sample size allocation problem. Suppose that in the planning stage of the 

experiment, a total of n, +...+nk = n observations are planned to be drawn from the respective 

populations. Since after every observed X = x, the posterior Bayes risk will be equal to 

min^  k E{L(0,i)|X = x}, the optimum allocation of n^...,^, i.e. the Bayes design, is given 

by the following criterion: 

min    E(min E{L(0,i)|X}),        in general, (10) 
n[+...+nk = n i=l,.-,k 

max    E( max ?{e{ = 0[k]|X}),     for "0-1" loss, 
n!+...+nk=n i=l,.-,k 

max    E(max E{0;|X}), for linear loss, 
n,+...+nk=n i=I,.-,k 
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where the outer expectation is with respect to the unconditional marginal distribution of X. For 

the normal-normal model and the binomial-beta model, its representation is given in (5) and in 

(7) and (8), respectively. The inner conditional expectations and probabilities in (10) are 

represented in general form in (4), and in their special forms for the normal-normal model and 

the binomial-beta model in (6) and (9), respectively. 

In the first part of this section, Bayes designs for the two special models will be studied 

under the "0-1" loss and the linear loss. For the normal-normal model, the Bayes designs 

consist of those sample sizes n,,...,^ which achieve the following maximum. 

max    E max      m® 

max    E 
iij +...+11^=11 

- <P(9)d9 
Vi=i.~.k n j*i    V °j J J 

max   

,    for "0-7" loss,     (11) 

for linear loss, 
Vi=i...,k      Pi+Vj       J 

where in the first criterion, O and cp denote the c.d.f. and density, respectively, of N(0,1), and 

where 5r =(pr + vr)~1/2, ur(Xr) = (prXr+vrjar)/(pr+vr), and pr=nra"2, r = l,...k, for 

brevity. The outer expectations are with respect to the marginally independent random variable 

Xr~N(^ir,p;1+v;I),r = l,...k. 

The special case of k = 2 populations has been completely analyzed in Gupta and Miescke 

(1994). For both loss functions it has been shown there, using different techniques, that the 

Bayes design is determined by minimizing |pt + vl -p2 - v2|, the absolute difference between 

the two posterior precisions. It is zero if and only if the joint posterior distribution of 0, and 

02 is decreasing in transposition, a situation in which the Bayes selection rules are of simple 

forms (Gupta and Miescke, 1988). The results for k = 2 mentioned above carry over to k > 3 

populations to some extend. This has been shown in Gupta and Miescke (1996a) for the linear 

16 



loss, mainly for the special case of n = 1. The latter plays an important role in optimum 

sequential allocations, which will be discussed in more details in the next section. 

For the binomial-beta model,  the Bayes  designs  consists  of those  sample  sizes 

n ,..., nk which achieve the following maximum. 

for "0-1" loss, (12) max    E 
n,+...+nt=n       V i=l k   <R  j*' 

max jnH,Xj(e)hi.xi(e)de 
n1+...+nk 

max    E 
nj+...+nk=n 

max for linear loss, 
i=i k^+ßi+n; ; 

where in the first criterion, Hr,Xr and hr,Xr denote the c.d.f. and the density, respectively, of 

Beta(ocr + xr, ßr + nr -xr), r = l,...,k, for brevity. The outer expectations are with respect to 

the marginally independent random variables Xr ~PE(nr,ctr,ßr,l), the Pölya-Eggenberger 

distribution given by (8), r = 1,..., k . 

In the second part of this section, the one-stage model considered above will be extended 

to a two-stage model, which can be summarized, after a standard reduction by sufficiency, as 

follows. At 0 GQ\ let X; and Ys be sufficient statistics of samples of sizes n, and m; from 

population P; at Stage 1 and Stage 2, respectively, which altogether are independent. It is 

assumed that sampling at Stage 1 has been completed already, where X = (x„...,xk) has been 

observed, and that it is planned to allocate observations Y = (Yp..., Yk) for Stage 2, subject to 

m1+...+mk = m, where m is fixed given. 

First, let us consider the situation at the end of Stage 2, where both, X = x and Y = y 

have been observed. From (2) and (3) it follows that every Bayes selection rule dB(x,y), say, 

is determined by 
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E{U0,dB(x,y))\X = x,Y = y} = min E{L(®,i)\X = x,Y = y}. (13) 

Here X and Y are not combined into an overall sufficient statistic, since the situation at the end 

of Stage 1 will be studied now. The criterion for allocating observations Y for Stage 2, after 

having observed X = x at Stage 1, is to find m1,...,mk, subject to the side condition 

n^+.-.+nik = m, for which the following minimum is achieved. 

min    E{E{L(0,dB(x,Y))|X = x,Y} | X = x} (14) 
mi+...+m]C=m 

=    min    E{ mm E{L(0, i)| X = x, Y} | X = x}, 
m1+-.+mk=m        i=l,._,k 

where the outer expectation is with respect to the conditional distribution of Y, given X = x. It 

should be pointed out that in (13) and (14), dB does not only depend on n„...,nk, which are 

fixed here, but also on m1,...,mk, which are varying, since every design of specific n's and m's 

has its own Bayes selection rules. 

From now on it is assumed that Stage 1 has been completed already, i.e. that X = x has 

been observed, and that a Bayes design for Stage 2 with m,+...+mk = m has to be determined. 

In this situation, it proves to be convenient to update the prior with the information provided 

by X = x (Berger, 1985), i.e. to treat Stage 2 with observations Y as a first stage and to use 

the updated prior density %(Q | x) as a prior density. The Bayes designs are then all sampling 

allocations m1,...,mk for which the following minimum or maximum, respectively, is achieved. 

min    Ex(/w'«Ex{L(0,i)|Y}) in general, (15) 
m1+.-+mk=m i=lr..,k 

max    Es(maxPx{0i =©M|Y» for "0-7" loss, 
m1+..+mk=m i=lr..,k 

max    Ex (max Ex {0; | Y» for linear loss, 
m1+..+mk=m i=lr..,k 

where here and in the following, the subscript x at all probabilities and expectations indicates 

that the updated prior, based on X = x , is used as prior. Comparing now (15) with (10), one 
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can see that the design problem for Stage 2, posed at the end of Stage 1, can be considered as 

a one-stage design problem and treated as such. 

On the other hand, if one prefers not to update the prior, then in (15), the inner 

operations Ex andPx are with respect to the conditional distribution of 0, given X = x and Y, 

and the outer operations Ex are with respect to the conditional distribution of Y, given X = x 

Both approaches are valid, equivalent, and lead to the same results. 

To conclude this section, Bayes designs for the two special models will be studied under 

the "0-1" loss and the linear loss. For the normal-normal model, it can be shown (Gupta and 

Miescke 1994) that the Bayes designs consist of those sample sizes   m,,...,mk which achieve 

the following respective maximum. 

r 
max    E 

n1+...+rri[c.=m     V-1™K   5;  j*i 

maxk jn^y1[^iz + ^i(xi)-^j(xj) + YiNi-YjNj])<P(z)d: (16) 

for "0-7" loss, 

max     ufmax f u, (x;) + y ;N; 1 J , for linear loss, 
_ M=l,.„,k   *■ ' 

mi+«+m^=m 

where   3r = (pr +qr +vr)-'/2,    yr =3r(pr +vr)"1/2qr
1/2,    ur(xr) = (prxr +vru,)/(pr + vr) , 

with pr =nra
_2and qr =mra

-2, r = l,...,k, and N,,...,^ are generic independent N(0,1) 

random variables. 

The results for the special case of k = 2 are analogous to the one-stage Bayes design 

mentioned earlier. Results for the case of k > 3 are only known for the linear loss. They are 

based, in view of (16), on the properties of ^{maxi^x{'k-+x^i}) as a function of 

A,- e91 and T^O, i = l,...,k. These properties have been derived in Gupta and Miescke 

(1996a) using the auxiliary function 
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T(w) = w ®(w) + <p(w) = {_" 0(v) dv , w s 9? . (17) 

Here the special case of m = 1 has been worked out in details, which is relevant for the Bayes 

sequential allocations to be considered in Section 4. Discussion of further results in this respect 

will thus be postponed until Section 4. 

For the binomial-beta model, the Bayes designs for Stage 2 consist of those sample sizes 

m1,...,mkfor which, subject to m,+...+mk = m, the following maximums are achieved. 

max     Y\ max jUn^Q) hiiX.yi(9)d9 Px{Y = y}, for "0-7" loss,        (18) 
m1+...+mk=m     y   Vi=l,...,k   3; j*i ' 

v ai+yi max      7,  max  
m1+...+mk=m      y   Ul k  ^+^+01^ 

p {Y = y} , for linear loss, 

where in the first criterion, Hr x v and hr x v denote the c.d.f and the density, respectively, of 

Beta(ar+yr,br+mr-yr), with ar=ar+xr and br=ßr+nr-xr, r = l,...,k, for brevity. 

The sums in (18) are expectations with respect to the conditional distribution of Y, given 

X = x, which, analogously to (8), are given by 

p /v-   x -U h)   rfri+bj) r(ai+yi)r(bi+mi-yi) 
p.l^-y) - n{yJ r(ai)r(bi)     ^+^+111,) 

where y; = 0,1,...^; , i = l,...,k. 

No further results are known in this situation under the "0-1" loss. However, under the 

linear loss, interesting theoretical as well as numerical results have been found by Gupta and 

Miescke (1996b) and Miescke and Park (1997a). These are relevant for the Bayes sequential 

allocations and will be discussed in the next section. 

To conclude this section, some comments will be made regarding cost of sampling. 

Suppose that every single observation costs a certain amount X, say. Then (10) and (15) have 

20 



to be compared with the respective cost of sampling nX and mX. If the cost of sampling turns 

out to be larger that the minimum posterior expectation given in (10) or (15), respectively, 

then apparently it is not worth taking all of these observations. This approach has been treated 

by Gupta and Miescke (1993), within the problem of combined selection and estimation, in the 

binomial-beta model. It leads, among other considerations, to finding the largest sample size, 

subject to its given upper bound, which is worth allocating to incur a gain. In the next section, 

where observations are allocated and taken in a sequential fashion, cost of sampling would 

require the incorporation of a stopping rule. However, this will not be done there to keep the 

presentation of basic ideas simple. Modifications of these sequential allocation rules to this 

more general setting are straightforward, but more involved. Therefore, cost of sampling will 

not be considered any further from now on. 

4. BAYES LOOK-AHEAD SEQUENTIAL SAMPLING DESIGNS 

From now on it is assumed that Stage 1 has been completed, i.e. that X = x has been 

observed already, and that m additional observations Y = (Yl3..., Yk) are planned to be drawn 

at Stage 2. The optimum allocations of sample sizes m1,...,mk, i.e. the Bayes designs, are 

determined by criterion (15), i.e. by 

mm    Ex(/nz«Ex{L(0,i)|Y}). (20) 
mi+.-+ni|.=m i=l,~.,k 

The first step toward sequential Bayes designs is to consider an intermediate step of 

Stage 2 sampling, where so far only Y = y has been observed, with m; observations from 

population P; , i = l,...,k, where m, +...+ mk = m, and where m with 1 < m < m is fixed. The 
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best allocation of the remaining m = m- m observations with mi = m; - ni; > 0, i = 1,..., k, 

achieves 

-      A 

Y = y, (21) min    EA min   Ex{L(0,i)| Y = y,Y} 
A A       A i=l,„,k 
mi +...+mit=n* 

where the outer expectation is with respect to the conditional distribution of the new 

A ~ 

observations Y, say, given Y = y (and X = x ). 

Returning now to the end of Stage 1, the optimum two-step allocation for drawing first m 

A ~ 

and then m = m - m observations at Stage 2 is found by backward optimization. First one has 

to consider every possible sample size configuration m1,...,mk and every possible outcome 

~ ~ A ~        ~ — 

Y = y. For each such setting, one allocation mi(y,m1,...,mk), i = l,...,k, has to be found 

which achieves (21). Then one has to find an allocation m1,...,mk which achieves 

/ 

min    E. min    El min Ex{L(0,i)| Y,Y} 
> n    A i=l,..,k 

m1+...+ m1=m \ m1+._+m1=m 

Y 
\ 

(22) 

Here one should be aware of the fact that the information contained in Y is the combined 

~ A 

information gained from Y and Y. It should also be pointed out clearly that in the middle 

A A ~ ~ ~ 

minimization operation of (22), mI,...,mk depend on ra],...,mk and on Y, and thus they are 

random variables themselves! This is the very reason why (22) can be handled numerically and 

in computer simulations in the binomial-beta model, where Y is discrete and assumes only 

finitely many values, but not in the normal-normal model. 

Comparing now (20) with (22), one can show that the latter must be less than or equal to 

the former. If one deletes in (22) the minimum to the right of the first expectation, and inserts a 
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A ~ 

minimum to the left of the same, subject to m* = nij -mk > 0, and subject to m, +...+ mk = m, 

then the resulting value cannot be smaller. Combining now the two iterated minimization 

operations into one leads to (20). To summarize, one can state (Miescke and Park, 1997a) the 

following result. 

Theorem 1.    For fixed m and m<m, the best allocation for drawing first m and then 

m = m-m observations at Stage 2 is at least as good as the best allocation of all m 

observations in one step, in the sense that the posterior Bayes risk (22) of the former is not 

larger than that one of the latter, given by (20). This process ofstepwise optimum allocation 

can be iterated for further improvements. The overall best allocation scheme is to draw, in m 

steps, one observation at a time, which are determined by backward optimization. 

In view of this theorem, several reasonable sampling allocation schemes can be 

constructed which utilize information gained from observations at previous steps. Let Rt , for 

t < m , denote the allocation oft observations determined by (15), with m replaced by t there. 

Moreover, let Ru allocate any single observation to one of the populations sampled by Rt. In 

a similar way let R*u allocate one observation to one of the populations to which Rt assigns 

the largest allocation. Finally, denote by B, the optimum allocation of one observation, 

knowing all future allocation strategies. It should be pointed out that, unlike the other 

allocations considered above, B, is not a stand-alone procedure, since it requires the 

knowledge of what will be done after its has been applied. 

Using these three types of intermediate allocation rules, the following schemes of 

allocating m observations are possible. (RJ allocates all m observations at once, using (15). 

This fixed sample size m Bayes design will be denoted by OPT in the following. A better 
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allocation scheme, in terms of the Bayes risk, is (R^.R^,) , which uses Rnlfor the first 

allocation, and then Rm_, for the rest. Better than (Rnl,RmJ, of course, is (B^R^,), which 

uses backward optimization B l for the first allocation, knowing that Rm_t will be used for 

allocating the remaining m - 1 observations in one step. In this fashion, similar and also more 

complicated allocation schemes can be constructed (Gupta and Miescke 1996a), which are 

linked through a partial ordering in terms of their Bayes risks. Such constructions are 

motivated by the fact that the overall optimum allocation scheme (B1,B1,...,B1,R1), denoted 

by BCK, is not practicable, except for small m and k, up to about m = 20 for k = 3, in the 

binomial-beta model. For this model, the allocation scheme APP, say, which is 

(R*m,i>Rm-u'—<K.iRi)> appears to be a very good approximation to BCK under the linear 

loss. This will be justified at the end of this section. 

The allocation scheme (RltR,,...,RJ allocates in m steps one observation at a time, 

using R;, pretending that it would be the last one before making the final (selection) decision. 

It looks ahead one observation at a time (Berger, 1985, Amster, 1963) and will be henceforth 

denoted by LAH. It should not be confused with the allocation scheme SOA, say, which 

allocates in m steps one observation at a time, using the "state of the art". To be more specific, 

suppose that Y = y has been drawn so far. Then SOA allocates the next observation to any 

one of those populations which are associated with the minimum of the k values of 

Ex{L(0,i) | Y = y}, i = l,...,k. Two other allocation schemes, which will be considered later 

in the simulation study of the binomial-beta model, should be mentioned here. The first assigns 

one observation at a time, each purely at random, regardless of the previous observations, and 
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is denoted by RAN. The second assigns m/k observations to each populations, provided that 

m is divisible by k, and is denoted by EQL. 

Theoretical results for allocation scheme LAH in the normal-normal model and under the 

linear loss, which are presented in Gupta and Miescke (1994,1996a), will now be discussed. 

Here, it is sufficient to consider the first allocation^, in (Rj.R,,...^,), which is based on 

X = x. All consecutive allocations R,  are decided analogously, based on X = x  and the 

observations Y = y that have been taken so far at Stage 2. Starting with criterion (16) for the 

linear loss with m = 1, where exactly one of the sample sizes m,,...,mk is equal to one, and 

all others are zero, i.e. where exactly one of qi,...,qk is equal to a"2 and all others are zero, 

this first observation is taken from one of the populations which yield 

maxE(»7ax||ai(xi) + aiNi)»7ar{|ij(xj)}|J , (23) 

= max \HiCxJ + OiTflwaxfajCXj.)}-Hi(xi)]/oi)f> 
i=l k  L J*i J 

where or = (pr +a"2 + vr)-
,/2(pr + vr)-

I/2o--\ and nr(xr), r = l,...,k, are defined below of 

(16), and the function T is given by (17). 

To describe the properties of the first allocation R, in (R,,R1,...,R1), it proves useful to 

consider the ordered values um (x) < \i[2] (x) <... < u[k] (x) of ur (x) = u-r (xr), r = 1,..., k. Let 

P(i) be the population, and let o(i) be the standard deviation, which is associated with n(i](x), 

i = 1,..., k. Then one can state the following result. 
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Theorem 2.    After X = x has been observed, the preferences of the first allocation R, in 

(R1,R,,...,R1) are as follows. 

(I) If a^,!) < (=,>) a(k), then allocating to P^ is worse than (equivalent to, better than) 

allocating to Pw. 

(II) If for l<i<j<k-2, a(i) < aQ), then allocating to P(i) is worse than allocating to Pö). 

(HI) If for 1 < i < j < k - 2, a(i) > oö), and a(i) <(=,>) a;j, then allocating to P(i) /s wow 

tf?a« (equivalent to, better than) allocating to Pa), where o;j ?5 determined by 

HD] (x) + a(j)T((^i[k] (x) - Hßj (x)) / aö)) = u[;] (x) + a, ^((u^ (x) - u^ (x)) / a; J. (24) 

(IV) Zetf P(4) &e a £e.rt allocation to either?^ or Pw according to (I). Likewise, let P(.} Z>e a 

£es? allocation to P(1))...,P^.2) according to (II) and (IE). 7ne« an overall best allocation 

is found by using Ql) and (JS) with (i), (j), o^, u[;] (x) ,and ^(x) replaced by (•), 

(*), a.. , n[.](x),flwrfn[k_1](x). 

The proof can be found in Gupta and Miescke (1996a), along with further comments. 

Moreover, a numerical example with real life data is presented there, in which also 

comparisons are made with respect to standard multiple comparison procedures, such as the 

Scheffe's and Tukey's methods. 

Theoretical and numerical simulation results for the binomial-beta model under the linear 

loss are presented in Gupta and Miescke (1996b) and Miescke and Park (1997a). These will 

be discussed in the remainder of this section. First, properties of LAH, the allocation scheme 

(R,,R, R,), will be studied. As it has been justified above, it suffices to consider the first 

allocation R, of it. Starting with criterion (18) for the linear loss with  m = 1, where exactly 
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one of the sample sizes m,,...,mk is equal to one, and all others are zero, this first observation 

is taken from one of the populations which yield the following maximum. 

maxEx 
i=l,..,k 

max\ 
a,- +Y 

, maxi 

max 
i=I k 

maxi 

aj+bi+l'  j« [aj+bj 

a; +1 

(25) 

, maxi 
aj 

a; +b; +l'"j*i"|aj+bj 

a. 
a;+b; 

+ max' 
aj+0 I    aj 
 ,max\ 

aj+bi+r  jri laj+bj 

b: 

a; +b; 

where ar = ar + xr and br = ßr + nr - xr, r = 1,..., k, for brevity. To summarize, one can state 

here the following result. 

Theorem 3.   The first allocation R, in (RPR,,...,RJ is made with respect to one of the 

populations P;,  i = l,...,k, for which the maximum in (25) is achieved. All consecutive 

allocations of the type R1 are made analogously, with arand br updated to ar +xr +yr and 

ßr +nr _Xf +mr_yr; respectively, with respect to the mr observations, represented by yr, 

r = 1,..., k, which have been made so far at Stage 2. 

The proof is given in Gupta and Miescke (1996b), along with further details of the 

behavior of this allocation scheme. One interesting point, worth to be mentioned, is related to 

the fact that under the linear loss (with no cost of sampling), the Bayes look ahead risk cannot 

increase when more future observations are included. This fact implies that the maximum in 

(25) is always greater than or equal to maxi=l _k{a; /(a; +b{)}. However, equality may occur, 

in which case one additional observation from any of the populations would not be worth to be 

taken, from the Bayesian point of view. A similar situation may arise at any allocation of the 

type R, in (Rl,Rl,...,Rl), and especially at the last allocation. In the latter case, one can 

accelerate the process by stopping one observation short of m. In the context of sequentially 
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allocating m observations at Stage 2, however, this is of minor concern and will not be 

considered any further. 

Numerical results for allocation schemes EQL and OPT, and computer simulation results 

for RAN, SOA, and LAH have been presented for k = 3 populations in Gupta and Miescke 

(1996b). The computer programs were written in Microsoft Quick Basic Version 4.5, using 

subroutines from Sprott (1991). These results have been extended, using Microsoft Visual 

Basic Version 4.0, to numerical results for the overall optimum allocation scheme BCK in 

Miescke and Park (1997a), where it has been also found that APP appears to be a very good 

approximation to BCK. In summary, the performances of the following allocation schemes 

have been studied, which have been explained in more details earlier in this section. 

RAN Assign one observation at a time, each purely at random. 

EQL Assign m / 3 observations to each population P,, P2,P3. 

SOA Assign one observation at a time, following the state of the art. 

LAH Assign one observation at a time, using (R1,R1,...,RJ). 

OPT Assign mt observations to Pt, t = 1,2,3, using (Rm). 

APP Assign one observation at a time, using (R*ml, R*m_u,...,R'2\t, Rt). 

BCK Assign one observation at a time, using backward optimization. 

In three examples, with suitably chosen values for ar =ocr +xr and br =ßr +nr -xr , 

r = 1,2,3, to cover various interesting settings, the performances of these allocation schemes 

have been compared. The values for m considered have been 1, 3, 9, and 15. For m= 1, 

EQL has been set to take its observation from population P] , rather than leaving the 

respective spaces empty in the tables. As to ties, RAN, SOA, LAH, and APP have been used, 

and are recommended to be used, with ties broken purely at random, with equal probabilities, 
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whenever they occur. This recommendation is corroborated by findings in the numerical 

studies. 

Comparing the expected posterior gains of the first five allocation schemes, it turns out 

that overall, LAH and OPT are performing similarly well, each sometimes better than the 

other, but clearly better than RAN, EQL, and SOA. The latter effect is found to be increasing 

in m. That LAH is not always as good as OPT proves that it cannot be any version, i.e. with 

any type of breaking ties, of the allocation scheme (Rnl,Rm.u,-,R2.iRi), and tnus in 

particular it cannot be equal to (Rlu,Rl.u>->RliRi)> ie- APP> since the latter tw0 are 

always at least as good as OPT. One advantage of LAH, besides its easy implementation, is 

that each of its individual allocations is self-contained. Thus, if in an ongoing experiment the 

total number m of observations has to be changed, this has only minor effects on its usage. 

The numerical results for BCK in Miescke and Park (1997a) became feasible with the 

release of Microsoft Visual Basic Version 4.0 , which allows to handle, on a typical IBM type 

Pentium Computer, a 6-dimensional array (for the a^s and b;'s) with a common subscript 

range of 1,2,..., 15 (for the mj's), i.e. more than 107 variables. As anticipated, LAH and OPT 

turn out to be good approximations to BCK. 

One striking fact has been observed by comparing the first allocation of BCK with the 

allocation m1,m2,m3 of OPT. In all but one of the 96 parameter settings considered in the 

three examples, the population to which OPT allocates the largest sample size is one of those 

which BCK would allow to start with. This indicates clearly that the allocation scheme 

(R'nl,R*m_ll,...,R]1R1), i.e. APP, should be considered as a good approximation to BCK, and 

thus be used in practice. A study of the performance of APP within the framework of the three 
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examples does not appear to be feasible at this time because of the length of the computing 

time required for such a task. It would be a combination of calculating the individual steps R*u, 

randomizing tied populations, and simulating the m outcomes. 
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